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Surface tension, roughening, and lower critical dimension in the random-field Ising model

G. Grinstein
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorkiown Heights, New York 10598

Shang-keng Ma
Department of Physics and Institute for Pure and Applied Physical Sciences,
University of California, San Diego, La Joila, California 92093
(Received 3 May 1983)

A continuum interface model is constructed to study the low-temperature properties of domain
walls in the random-field ising model (RFIM). The width of the domain wall and its surface tension
are computed by three methods: Simple energy accounting, dimensional arguments, and approxi-
mate renormalization-group calculations. All methods yield 2 surface tension which is positive at
sufficiently low temperature for small random fiekds, A, provided that the dimensionality d > 2. The
Jower critical dimension of the RFIM is thus ar, 1o be 2. While effects due to discreteness of a
Inttice are argoed to alter some of the continuum mults quantitatively, they do not change these
central conclusions. |
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Numerical Evidence for d,=2 in the Random-Field Ising Model .
J. F, Fermndez, ™ G. Grinstein, Y, Imry, ® and S, Kirkpatrick Pﬂ]_gj,mmgg) |

IBM T, J. Waison Research Center, Yorkiown Heights, New York 10598
(Received 20 May 1983}

A solld-on-solid interface representation of the random-field Ising model fs studied
le size In

numerically {n two dimenaions, The interface width varies Linearly with samp A
agreement with simple energy-sccounting arguments recent theories whick Eed{ct
that two is the lower critical dimension of the randomn-Held Ising model,
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Pinning and Roughening of Domain Walls in Ising Systems
Due to Random Impurities
PRL 54, 2708 (11%5)

David A. Huse and Christopher L. Heanley
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
{Received 12 April 1935)

Randomly placed impurities that alter the local exchange couplings, but do not generate random
fields or destroy the long-range order, roughen domain walls in Ising systems for dimensionality
-} < d <5. They also pin {localize) the walls in energetically favorable positions. This drastically
stows down the kinetics of ordering. The pinned domain wall is 2 new critical phenomenon
governed by a zero-temperature fixed point. For d =2, the gritical exponents for domain-wall pin-

ning energies and roughness as a function of length scale 3re estimated from numerically generated
ground states. : ‘
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FIG. 1. The root mean square transverse devistion from
flatness, W(L), of the ground states of segments of domain
wall of length L (upper data), and the energy scale E, (1)

@‘) 2
as defined by Eq. (12) (lower data). Fits with straight lines H - de i_li(%?i' * 3

on the iog-log plot give exponent estimates [=0.66 +0.02

md X=0.33 £0.01, respectively. The straight lines shown

here have the slopes given by the conjectured exact ex-

ponents {=$ and X={. The deviations from a straight =

line for small L that can be seen in the data for W(L) are (,)-_—_2§...] =+
presumably due 1o corrections to scaling. ‘The statistical er- ' 3
rors are less than or equal to (for large L) the size of the

points on this graph. 7
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FIG. 1. In this square lattice each bond is given a random
value; at the Jevel ¢ there are ¢ points and each of them can be
connected to the apex of the triangle in 2 unique optimal way.
A few local optimal paths are shown; one path is the overall
best path.
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Growth in a Restricted Solid-on-Solid Model
Jin Min Kim and J. M. Kosterlitz ' PHL @2;,22.8‘] (\‘18"0

Department of Physics, Brown University, Providence, Rhode Island 02912
{Received 23 January 1989}

Extensive simulations of growth in a stochastic ballistic deposition model on a (d = 1)-dimensional
substrate with a constraint on neighboring interface heights are described. The interface width obeys
scaling even for small systems and grows as r® with §=1/(d +1). Generalizations to include irrelevant

effects such as noise reduction are discussed as are possible reasons for the discrepancies in earlier re-
sults.
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FIG. 1. Interface width ¢ as a function of system size L. M
is the noise reduction parameter.
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Disorder-induced roughening of diverse manifolds

Timothy Halpin-Healy
Department of Physics, University of Moryland, College Park, Maryland 20742
and Department of Physics, Barnard College, Columbia University, New York, New York, 10027-6598*
{Received 15 January 1990)

We propose a unified treatment of the roughening of manifolds by impurities in quenched corre-
lated random media. Our perspective incorporates such apparently distinct problems as domain
walls in dirty Ising magnets, biased walks upon random lattices, and flux creep in high-T, materials.
By means of generalized Imry-Ma arguments and a functional renormalization group (RG), we find
new results, including the random-bond interfacial roughening exponent, {pp=2¢/9, as well as esti-
mates for the many-dimensional directed-polymer wandering index. This last quantity is also inves-
tigated via real-space RG methods, where we find, for example, {;,,=0.602, in reasonable agree-
ment with the functional RG vajue % Finally, since the Burgers equation permits translation of our
directed-polymer results to the Eden cluster and ballistic depusition problems in higher dimensions,
we can compare o the most recent computer simulations of these stochastic growth models. In par-
ticular, we address issues regarding the exponent conjectures that have been made and suggest the

15 JULY 1990

possibility of a finite upper critical dimension.

L. INTRODUCTION

Il-condensed matter,! both in its experimental mani-
festation as well as its realization via simplified models,
such as random-field and random-bond Ising systems,
directed polymers in disordered media, spin glasses, Eden
clusters, ballistic deposits, and the like, has held the at-
tention of the physics community for much of the past
decade, remaining quite elusive and yielding but oc-
casionally to our amalytic investigative tools. Consider,
for example, an Ising ferromagnet subject to quenched
disorder in the form of random fields at each site.”™ "
Seemingly innocuous issues, such as those concerning
marginal dimensionalities, critical exponents, and growth
kinetics, proved to be sufficiently subtle that years of spir-
ited, and sometimes contentious, discussion were required
to resolve the controversies that arose. The random-bond
problem™ ™2 appears, presently, to be no less intractable.
Nevertheless, it was realized rather early that many of
the crucial static and dynamic bulk properties of these

- disordered magnets could be understood by examining
the impurity-induced roughening of domain walls in these
systems. The original insight, due to Imry and Ma,” has
been generalized recently by Kardar®’ and Nattermann®
to randomness of arbitrary correlation,. thereby interpo-
lating between random-field (RF) and random-bond (RB)
situations. Halpin-Healy,” using 2 functional renormal-
ization group (FRG), has subsequently retrieved all of the
exact results of these authors for one-dimensional inter-
faces, but furthermore addressed the fundamental ques-
tion of interfacial roughening in arbitrary dimensionality.
Moreover, his treatment broadened the essentials in yet

another respect—consideration of a vector, rather thana -

scalar, distortion field permitted unification of an impres-
sive variety of problems, including domain-wall roughen-
ing,2 "% directed-polymer wandering,> > and flux cree

and collective pinning in high-7, superconductors,>>~
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all being subsumed under the heading of diverse mani-
folds in random media.”® In addition, because of an ex-
plicit mapping,>® via the Burgers equation,” connecting
the directed-polymer problem to a host of others, such as
the growth dynamics of Eden surfaces and ballistic depo~
sites,* 73! the large-time behavior of randomly stirred
fluids,” and the asymptotics of driven diffusion,> there is
an extraordinary richness to this subject.

The crucial object of interest in our investigations is

 the critical index ¢, ,, defined by the relation |z|=|xl%,

which documents the disorder-induced roughening of an
n-component vector field z(x) of d'-dimensional support.
The central result following from our functional renor-
malization group, aside from Imry-Ma arguments gen-
eralized for diverse manifolds, is that for the case of
quenched, short-range correlated random media, the
roughening exponent §y. ,=*2(4—d")/(8-+n). The paper
proceeds through an examination of several physically
relevant instances, amongst them interfacial roughening
(d’ arbitrary, n=1, see Sec. II), directed-polymer
wandering (d’=1, n arbitrary; Sec. III), as weil as Eden
clusters and ballistic deposits {Sec. IV). We also discuss
briefly some recent work on collective pinning of vortex
lines and flux creep in ceramic superconductors
{d'=3, n=2; Sec. V), before closing with a summary
{Sec. VI) of the salient features we hoped to communi-
cate.

H. IMPURITY-STRICKEN MAGNETS

In this section, we will concentrate specifically on the
subject of disorder-induced roughening of domain walls
using the language of Ising magnets,>~ % although our re-
sults have relevance in a variety of other contexts, includ-
ing the pinning of charge density waves by impurities and
interfacial delocalization in random media. As men-
tioned above, we comsider a continuum model of the

M ©1990 The American Physical Society
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domain wall embedded in a disordered environment. As
always, we assume that the interface runs on average
parallel to some reference plane with the single-valued
function z(x) denoting the position of the domain wall
measured with respect to this plane at the point specified
by the (d —1I)imensional vector x (see Fig. 1). At

length scales large compared to all microscopic features,

the domain wall is properly described by the interfacial
'Hamiltonian

FH= fd"'"’x

¥

%(Vz)’-i-or‘\f(z)

where v is the surface tension parameter that discourages

deviations from planar and ¢ gauges the strength of the
random pinning potential V. It is precisely the competi-
tion between these two terms, elastic energy cost versus
random energy gain, that determines the scaling proper-
ties of the roughened interface. We deal with correlated
randomness that is Gaussian with zero mean and vari-
ance,

{V(z,x)V(0,0)}=5%(x)R (2) ,

where d'=d —1 for notational convenience. Within the
present formulation, the RB problem corresponds to im-

L,
;

X

FIG. 1. A domain wall separating twe phases of matter in d
dimensions can be described conveniently by a single-valued
function z(x), denoting its height in terms of the remaining
(d — 1) coordinates. Hlustrated here is the most compelling case
physically, d =3. In a pure system at zero temperature, such an
interface would be strictly fiat to minimize surface tension costs.

However, if the medium were populated by quenched pinning -

impurities that attracted the domain wall locally, a competition
would result between the random potential gain, favoring fluc-
tuations, and the elastic energy cost, discouraging deviations
from planar. What follows from this competition is a nontrivial
disorder-induced roughening of the interface, embodied in the
relation z~|x|¢, which characterizes typical transverse fluctua-

tions of the domain wall with basal length. Such impurity- -

dominated roughening is usually much more severc than the
mild thermal roughening that occurs at 7> 0 in the absence of
disorder. Our interest lies in determining how the interfacial
roughening exponent depends on the correlated nature of the
quenched randomness.

purities that are, strictly speaking, uncorrelated [i.e.,
R (2)=8(z)], while the RF Ising model involves correla-
tions that increase linearly at large distances. The great

virtue of this approach, inspired by the earlier work of

Kardar?! and Nattermann,? is that it handles domain-
wall roughening by randomness of arbitrary correlation,
thereby interpolating between the fairly well understood
RF and apparently much more dificult RB problems.
For functions R that are smooth at small argument and
behaving asymptotically as z %, a simple scaling argu-
ment in the spirit of Flory, which in fact just generalizes
the notions of Imry and Ma,” permits us to determine the
roughening exponent { describing nonplanar fluctuations
of the domain wall z~ |x|*. In particular, if we rescale
lengths in the base plane according to x—Ax, then
z—+A%z and, furthermore, it is clear that v and o have
scaling indices y,=2{+d’~2 and y,=(d'—BE)/2, be-
cause the assumed variance form must remain unaltered,
which requires V—A """ +829  Ingisting, as Imry and
Ma did, that the surface tension cost balance the random
energy gain (i.e., the two terms of the interfacial Hamil-
tonian must scale the same way) we fix the roughening
exponent at {y=¢/(4+f), where e=5—d. Observe that
this analysis retrieves, for f=—1, the known value
{rp=€/3, due to the original Imry-Ma argument, but
sheds little light on the RB problem since it is not at all
apparent which value of 8 is appropriate. Naively, we
could suggest S==1, since the § function has dimensions
of inverse length; on the other hand, the & function is
shorter-ranged than any power law, so perhaps = is
most natural. Resolution of this ambiguity necessitates
going beyond simple energetic issues associated with the
trivial scaling properties of # as in the Imry-Ma scheme
and examining fluctuations about this mean-field theory.
Nevertheless, we suspect that provided the correlations
are sufficiently long ranged (i.e., § small enough), the
refined mean-field treatment will be correct. The crucial
question then becomes—what is the critical B, at which
the theory breaks down and, most importantly, what is
the roughening exponent {sp dictated by the new short-
ranged fixed point function (SR FPF)? Application of the
functional renormalization group readily provides some
answers to these questions.

Since we are interested in studying the statistical
mechanics of domain walls in magnets subject to random,
but correlated disorder, it is necessary to go beyond the
tree-level Hamiltonian and to consider issues of free ener-
gy. Hence, we are led to an investigation of the full parti-
tion function:!%h23

Z=[Dzexp —*—;—;fdd'x[%(Vz)2+‘V(z)} :

where T is the temperature; also, we are using units in
which the surface tension v is unity and the pinning po-
tential strength is no longer explicit, but rather subsumed
by the correlator R. Because R is completely general at
this point and the functional RG will entail a thorough
examination of the flow and renormalization properties
of this function, we are completely free to avail ourselves
of this convenience. As noted by Brézin and Orland,"



42 DISORDER-INDUCED ROUGHENING OF DIVERSE MANIFOLDS

the essence of the functional RG is merely a calculation
of the effective action {or free energy) to one-loop order,
followed by differential length x —x /(1-+80) and field
z—z /{1+§8]) rescalings, to determine the manner in
which the interaction, here R (z), behaves under the
infinitesimal dilatation. Indeed, R is the relevant quanti-

ty in the present context because we desire to average the
free energy InZ over the many different realizations of |

disorder and must therefore rely upon the replica trick,
which introduces R as the attractive interaction amongst
replicas, following the (Gaussian integral} disorder aver-
age over V. More explicitly, with angular brackets
denoting as before the average over complexions of ran-
domness, we invoke replicas to provide us with the ap-
parently innocuous relation that connects the object we
wish to know (InZ ) with those we can actually calcu-
late, namely, (Z¥):

e e¥BE_qy 7Ny
{InZ) (;?i'f‘o N ) =N
there being little reason to believe the interchange of lim-
iting and averaging procedures to be suspect in the case
at hand {i.e., no replica symmetry breaking). In this
fashion, we focus our attention on the disorder-averaged,
replicated interface partition function,

(ZN)ﬂfi)zaexp “;:}Lfdd'x

1
X E(Vza)z—F S Rzy—zg)
a a.B
o
the sum over a,8=1,...,N. Formally expanding the
correlator R abount its minimum to quadratic order, going
to Fourier space and evaluating the resulting Gaussian

integral in the standard manner yields the ome-loop
effective action:

R
= =HTrln Byt qiTR"(z,,—-zg)
Bag < e
_“'"Z"E:ZR (z,—z,)],

where Tr=3 [d¥q. The calculation proceeds by using
the matrix analog of the Taylor-series expansion
log(1+x)=x ~x*/2+ --- and concentrating on the
second-order piece, which gives us the desired factor of
T2 to balance that on the left-hand side. This is neces-
sary because our functional RG, while treating the flow
properties of R, is essentially perturbative in the tempera-
ture. In fact, a moment’s reflection upon the full parti-
tion function reveals that T has length dimensions
[T]=d’'—~2+2¢, so that under the infinitesimal rescaling
we have T—sTp =T /(1+80)* ~**%, which implies that
the differential flow equation for the temperature reads

=(2—d'—26)T .

Hence, provided the disorder-induced roughening is
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more severe than simple thermal roughening [£>(2
~d’'}/2], T —0 under renormalization and the physics is
controlled by a zero-temperature fixed point. Indeed, this
is typically the case for interfaces in the physically
relevant dimensions and, in addition, has the very impor-
tant effect of allowing us to ignore the linear term in our
expansion of the one-loop logarithm, since there is an un-
compensated power of 7. By contrast, the cubic and
higher-order pieces can be neglected because, as we will
show shortly, the SR FPF is 2 Gaussian-damped power
law at large argument and owr interest concerns only the
tail of this function. In sum, the surviving term at quad-
ratic order is the leading and sole relevant one. It reads:

-1 [%{R"(za—zs)}z
@, .

—2 3 R"z,~2g)8,9R"(25~2,)

B,y

&
+ ¥ R"(za-zB)R"(za"z}.)] A%*%- .
ahy 0 ¢'T

As we are performing an infinitesimal dilatation, the fluc-
tuation correction to the effective action involves a
change:

2’1‘2 z[R"(z —zg) P~ 2};12"(: sz)R"(O)]Sl

where, for convenience, we have set the momentum
cutoff A==1 and ignored the term involving an irrelevant
three replica sum.’™® Of course, when we include the
trivial rescaling

R—[1+(e—45)8IR{(z[x{(1+£81)]

—R +[(e—4L)R +L2R'JSI

following from the simple length dimensions of R and z,
we arrive at the functional recursion relation for the corr-
lator,

oR
al

a nonlinear partial differential equation first written
down, though derived in a slightly different manner, by
Fisher,!%®)

Unfortunately, when Fisher first obtained this partial
differential equation, the ideas of Kardar’' and Natter-
mann?? were not yet available and there was little to be
done, save for a straightforward numerical integration to
search explicitly for the scale-invariant (3;R¥; =0) SR
FPF relevant to the RB problem. Intuitively, we would
expect R3p to be a Gaussian of sorts—though the only
physically motivated analytic properties we insist upon
are (i) short-ranged character resulting from renormaliza-
tion of the bare § function, (ii) zero slope at the origin,
since R is assumed to be even, and finally, (iil) an asymp-
totic approach to zero at large argument. In fact, imposi-
tion of this last requirement permitted Fisher o ascertain
the RB roughening exponent {c; as the numerical solu-
tion to an eigenvalue problem. The computational
method is as follows. Consider the equation satisfied by

={e—4{)R +{zR'+ LR —R"R"(0) ,
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the SR FPF. Rescale R by € and then set R"(0)==—1.
‘We are at liberty to do this, since it amounts to choosing,
separately, our units of length along the R and z axes,
different rulers permitted. The choice, of course, is arbi-
trary in that it will have no effect whatsoever upon the
final answers, although is convenient for our purposes,
since it has an ordering effect. The resulting nonlinear
differential equation reads

(e—4{)R +LzR'+ LR P+eR"=0 .

Our numerical integration must commence at the origin.
Since the first and second derivatives there have already
been fixed, the sole degree of freedom lies in picking
r=R{0). In fact, a choice for r amounts to guessing the
eigenvalue £, as can be seen by evaluating the above equa-
tion at z =0:

=£ ;L
£ 4 {1 2r
For r=2.997, which implies §~0.2083¢, we retrieve
Fisher’s estimate and a SR FPF that approaches zero
asymptotically (Fig. 2). Moreover, as pointed out by

Fisher, the functional form of the tail can be determined
exactly, R~z " /texp(—z2/2¢). The importance of

this will be made quite clear shortly. For larger values of -

r, the numerical integration yields a function that goes
negative at some finite value of z, bottoms out and then
approaches the axis from the underside. By contrast, if r
is chosen too small, the curve appears to level out at a
value that is certainly nonzero. Naturally, as regards the
SR FPF, both of these behaviors are unacceptable. In

R{z)

r*=R*0)=2.977 ® [=0.2083 ¢

' r=r*
\___—/ z

r>r¥

FIG. 2. Numerical analysis of Fisher's second order, non-
linear PDE for the SR FPF, R*(2), controlling interfaciat
roughening by quenched randomness of short-ranged correla-
tion. The integration commences at the origin, where the slope
vanishes by symmetry and we have set R"'=—1 for conveni-
ence. Our sole remaining freedom is in choosing r =R *{(0),
which being related to {, thereby fixes the roughening exponent
as a numerical eigenvalue. For r=p%=2,097={=~{.2083¢,
we find a numerically determined FPF with the correct asymp-
totic behavior. By contrast, picking r>r* yields a correlator
that goes negative, while r <r* gives a falioff that does not ap-
proach zero,

practice, we decreased r until the intercept moved off to
infinity—the result is robust to the four quoted
significant digits. While there may be no reason to object
to this particular implementation of the numerical in-
tegration, we® have recently emphasized that the starting
point may be problematic. That is Fisher arrived at his

. differential equation for the SR FPF by neglecting the

higher-order terms foliowing expansion of the one-loop
logarithm. Although such terms may be ignored when
discussing the large-z behavior, they surely cannot for
z+=+0. Yet the numerical integration procedure com-
mences precisely at this point. In short, the differential
equation is correct asymptotically, though only approxi-
mate near the origin; nevertheless, we will see that
Fisher's estimnate is surprisingly good.

Aided by the hindsight furnished by Karder and Nat-
termann, we sought to view these issnes within the
broader context of models interpolating between RF and
RB problems. More specifically, we realized that the
only exact information obtainable from Fisher's
differential equation was the functional form of the tail,
as mentioned above. But therein lay the answer, since
the SR FPF represented a Gaussian damping of the criti-
cal power law z °. Hence, we have a second equation
B.=5—¢/{ to complement the generalized Imry-Ma for-
mula {=¢/{4+B) which we know to be valid up to and
including the critical 8. Simultaneous solution of these
two equations yields

=2 =1
gSR""ﬁ“e’ Bc'"""z" '

For B> B,, the roughening exponent { remains at this
valae and no longer obeys the Flory formula. In Fig. 3,
we summarize our findings for the interfacial roughening
index for randomness of arbitrary correlation. The in-
teresting new prediction is that {rp=2¢/9, compared to
the Imry-Ma determined {pr=€/3. As suspected, inter-
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FIG. 3. Interfacial roughening exponent § as a function of 3,
which describes the decay of impurity correlations. A general-
ized Imry-Ma theory is correct only for sufficiently long-ranged
correlations. Beyond the critical value B, =1, a single SR FPF
dictates the scaling properties and £ sticks to the RB value
2e/9.
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faces are roughened considerably more by RF’s than they
are by RB’s. - Correlated disorder incurs greater wander-
ing. Lastly, observe that since B, <1, the ambiguity that
arose earlier regarding the bare R most appropriate to
the RB case is now rendered moot, because all functions
falling off faster than the critical power law, once renor-
malized, lead to the same asymptotic scaling properties.
This is a manifestation of the functional formulation of
the renormalization group.

Knowledge of these wandering exponents permits us to-

make a number of additional interesting physical predic-
tions. With regard to the domain-wall problem, it is
known that for impurity-stricken Ising systems quenched
into the ferromagnetic phase, { fixes the growth rate of
ordered, coherent regions.!®!* In fact, at long times, the
characteristic domain sizes scales as (lnr)'’¥, where
W={d —3+2£)/(2—{). Consequently, for RB disorder,
we obtain the new result WR3(d =3)=%. In addition,
WRB~ | —e/6 as one approaches dimension five. Another
application involves the phenomenon of interfacial wet-
ting in random systems.!® For complete wetting in the
weak fluctuation regime, the mean position of the inter-
face is determined by the competition between the exter-
nal field, which pushes the interface towards the wall, and
the delocalizing effects of the randomness. As the bulk
field vanishes, the interface is depinned by the impurities,
its mean distance from the wall diverging with an ex-
ponent v, =L /(2—{). Therefore, in d =3 with uncorre-
lated quenched disorder where (=1, we expect the
complete wetting index v, =1,

HI. DIRECTED POLYMERS

A, Functional renormalization group

As the above application of the functional RG appears
fairly powerful, it behooves us to generalize our results
for the scalar field, which is appropriate to the discussion
of interfaces, to the case of an n-component vector field z.

In addition, if for the moment, we focus our attention

upon the situation where the base space has but a single
dimension (calling this special direction time 1) and re-
strict ourselves to uncorrelated disorder, we are led rath-
er naturaily to a Euclidean path integral lending itself to
a very attractive physical interpretation, namely, the
space-time diagram of a point particle subject to a
dynamically random potential (see Fig. 4). Alternatively,
we could view this partition function as describing any
linear defect in a quenched random environment, wheth-
er it be a vortex line in an impure high-T, superconduc-
tor,’ a dislocation in a disordered solid,? or a directed
polymer (a polyelectrolyte, perhaps) in a gel matrix.?®
Regardless of the chosen interpretation, however, the
essential physics remains the same and concerns the op-
timization of a biased walk amidst impurities. Anisotro-
py (i.e., the existence of the preferred time direction) and
randomness are the crucial aspects of this problem and,
indeed, the fundamental quantity of interest is the so-
called wandering (or, as before, roughening) exponent £,
which describes how transverse fluctuations scale with
longitudinal length |z|~t¢ after we perform the statisti-

4t
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FIG. 4. Impurity-induced roughening of an elastic linear de-
fect, such as a vortex line in a dirty ceramic superconductor,
dislocation line in a disordered solid, or a directed polymer in a
random medium. The transverse position of the elastic string is
given by an n-component vector field (1}, time ¢ suggestively la-
beling the special axis of anisotropy. Shown explicitly here is
the case n =2, The wandering exponent £, defined via the rela-
tion |z{~#¥, describes the scaling of this object which results
from the competing effects of elasticity and the uncorrelated
random pinning potential.

cal averages over many realizations of the disorder.
Beyond ¢, there is also the index @, which tracks the fluc-
tuations in the energy of the optimal path as we consider
various configurations of randomness. Nonetheless, an
exponent relation’!* u=2£~1 following from the sim-
ple scaling properties of the kinetic piece of the hamil-
tonian, connects the two.

The above directed-polymer problem (we will, for con-
venience, henceforth discuss its various formulations un-
der this single heading) has proved to be quite formidable
despite the utter simplicity with which it is posed. In
particular, all attempts to determine explicitly how the
wandering exponent £ depends on the number of trans-
verse dimensions n have thus far appeared uniformly un-
successful. Moreover, it is not even clear if directed poly-
mers in random media possess a finite upper critical di-
mension (UCD), beyond which the roughening exponent
retrieves its trivial thermal (or entropic) value £y, =1. To
date, what is known with certainty is that for the case
n =1, where the directed polymer (DP) behaves as the
one-dimensional interface of a 2D RB Ising magnet
S1+1= %, an exact result due to several independent inves-
tigators.'*"* In addition, Derrida and Spohn®® have ad-
dressed the problem on a Cayley tree, finding =0 (loga-
rithmic behavior), which suggests that at least in infinite
dimensionality, wandering may be simply entropic. Un-
fortunately, these are the only exact amalyses. Various
computer simulations* ~* on stochastic growth models,
such as ballistic deposition and Eden clusters, when
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translated into the language of directed polymers (see
later) reveal a decreasing many-dimensional DP index.
Specifically, the Wolf and Kertész (WK) conjecture re-
quires {yg=(n +1)/(2n 41), while that of Kim and
Kosterlitz (KK) has {gy = (n +3)/(2n +4). Both formu-
Ias recover the expected behavior in infinite dimensionali-

ty and assume no finite UCD. In this section, we will dis-

cuss briefly the approximate functional RG calcula-
tion” " of the wandering exponent £, while Sec. III B
will describe our efforts* using a real-space renormaliza-
tion group (RSRG).

Generalizing our earlier considerations (see Sec. I} to
the case of an n-component vector field yields some addi-
tional terms on the right-hand side of our differential flow
equation. They are of the form>*

2
n—1 1R— —tn—-1E R0
2 z

and follow immediately from the fact that

ZZ, IR Z:Z;
Rr_jm au__ ’21 -+ ZJ' R",
F4 z Z

where Latin indices denote partial derivatives with
respect to the components of z and we have made the
simplest, but physically motivated, assumption that the
correlator R is only a function of the magnitude z =iz|.
{However, Nattermann,® has shown that the same flow
equation follows regardless of this choice.) With these
terms in hand, we can proceed to determine the analytic
behavior of the tail of our new SR FPF, just as we did for
the interfacial problem (n ==1), We discover a Gaussian-
damped critical power law with nf,=4-+n —e/{. Sup-
plementing this equation by the generalized Imry-Ma re-
sult £=¢/(4+fBn} which we know to be correct up to and
including 8., we solve and find that §z=2€/{8+n) and
B.= 1, the fundamental FRG result of this paper. Evi-
dently, within our scheme, the value of the critica} falloff
is superuniversal {i.e., independent of both n and d).
Specializing to the DP problem, where the base space is
unidimensional (¢=13), we have the following formula for
the many-dimensional directed polymer index:

_ 6
S 8+n"
But this result is not to be trusted for n >4, since an ex-
amination of the thermal flow equation, when rewritten
for DP’s,
dT

“&T“(%“Q'D?}T ,

reminds us that the zero-temperature fixed point loses
stability there, whereas our FRG relies inherently upon a
renormalized T-»0. Nevertheless, assumption of the
most naive scenario would have the temperature run off to
infinity in this case (if there are no intervening FP's),
thereby fixing {=1 for all n =4 (see Fig. 5). It is in this
manner that we propose a mechanism for a finite UCD 1o
the DP problem.™ Yet the behavior of directed polymers
at nonzero temperatures raises subtle issues, as pointed

_C,Ml 4
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FIG. 5. Wandering exponent { for the many-dimensional
directed polymer. Given the most naive assumption regarding
renormalization-group flows, the roughening is simply entropic
(E=Ew=1)fornz4.

out by Nattermann. If we employ a Harris criterion
a“Z“Vﬂd" -Vldi 22” l""'—;‘n = 1 """é"n > 0 »

we find that the infinite temperature (purely entropic
wandering) fixed point is itself unstable to disorder for
n =2. Hence, within the context of our FRG approach,
the renormalization flows we find in temperature space
are summarized in Fig. 6. Note the existence of a finite-
temperature phase transition for 2 <n <4, separating
disorder-induced and thermal roughening.’’ The mar-
ginality of n =2, and the strong-coupling nature of the
problem were painfully apparent in early investigations of
directed polymers that relied upon the Burgers’s equa-
tion, an approach which has the misfortune of being per-
turbative in the disorder. By contrast, the FRG, since it
is perturbative in the temperature rather than the disor-
der, can gain access, albeit approximate, to the nontrivial
fixed point of great interest. However, it eventunally loses
validity for n >4. Hence, there the fipure should be
viewed as speculative. Nonetheless, the possibility of a
finite UCD to the directed polymer problem is an intrigu-
ing notion very much worthy of further attention.

B. Real-space renormalization group

Given the rather severe difficulties encountered in
determining exactly .the many-dimensional directed-
polymer wandering exponent, one is forced to rely npon

E > » o n>4
720 Tew

— L — 4>n>2
T=0 =T Te

ko Bl el <k 2>n
T=0 T=

FIG. 6. Renormalization group flows for the temperature 7°
for directed polymers in 1 transverse dimensions. For n >4, the
functional RG appreach breaks down, losing consistency since
the temperature flows from T =0. Given that the thermal fixed
point is perturbatively unstable to disorder, we illustrate the
simplest possible global scenario.
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the trusted panoply of approximate techniques to make
any progress. Beyond the FRG,?? these nonperturba-
tive tools include transfer matrices, the real-space renor-
malization group, as well as potential insights via instan-
tons. Indeed, it was precisely the transfer-matrix work of
Kardar and Zhang® which brought to light the richness
of the subject of directed polymers in random media. Al-
though their simulation first suggested superuniversal ex-
ponents, subsequent investigations revealed that the in-
dices @ and § decreased slightly with dimensionality. In
this section, we discuss attempts via a RSRG introduced
by Derrida and Griffiths®® that was recently extended™
by the present author to document the gradual decline of
these critical exponents towards their mean-field values.
The Derrida-Griffiths RSRG, a variant of the Migdal-
Kadanoff method specifically adapted to situations with
quenched random disorder, is a procedure that, at least in
principle, is exact upon the so-called hierarchical
lattices~those carefully crafted lattices whose connec-
tivity is sach that bond moving incurs no approximation
{see Fig. 7). If we consider the ith generation of the b-
branch hierarchical lattice illustrated in the figure, there
are b'~! possible directed paths between the points A4
and C, each of which has length L ==2'"!, In the direct-
ed polymer problem on disordered hierarchical lattices,
we associate random energies with each of the bonds and
search for the optimal paths of least energy. Averaging
over many realizations of randomness and studying the
statistical properties of the optimal path’s energy as a
function of the trajectory length L, we can ascertain the
energy fluctuation exponent @, since rms deviations from
the mean will scale as L®. Within the context of the
Derrida-Griffiths RSRG, the fundamental object of in-
terest is the probability distribution P(x), from which the
uncorrelated random-bond energies are drawn. The cru-
cial feature of the method, however, is a recursion rela-
tion which dictates the manner in which this probability
distribution is transformed after successive generations as
one is looking, effectively, at larger and larger length
scales. With P; denoting the functional form of the prob-

and

on

i i=2 i=3

FIG. 7. b-branch generalized hierarchical lattice, connecting
the points A and C, shown through the third generation (i =3).
A succeeding generation is obtained from the previous one by
splitting each bond in half, followed by a b-fold replication.

ability distribution at the ith generation, the renormal-
ized distribution at the next generation is obtained via a
multistep process. Firstly, splitting each bond in two
(i.e., doubling the path length L —2L) necessitates a self
convolution of the probability distribution

0:(x)= [ dy P,(x —y)P,(y)
while the b-fold replication of the branch requires
o a® b
[Pty = “0itpay |

so that the (i +1)th generation probability distribution is
given by

P, (x)=b0,(x) [fx""g,.(y)atv}""t :

which, in fact, is the form of the recursion utilized most
naturally in practice. The appropriateness of the second
step was made particularly manifest by the observation of
Derrida and Griffiths®® that in order for the optimal
path’s energy not to exceed a certain value, it must not do
s0 in each of the newly created b branches. Hence, it is
the bth power of the partially integrated convolution that
is relevant and must be equated to a similar integration of
the renormalized distribution. For a given brand of
hierarchical lattice {that is, for a specific value of b}, we
determine the energy fluctuation exponent @ following
from the Derrida-Griffiths RSRG by iterating the recur-
sion relation for the probability distribution P and noting
the evolution of its width after successive generations.
As the path length doubles from one generation to the
next, the width of P ought to increase by a factor that
asymptotically approaches a value A =2,

Guided by a strong faith in the principle of universality
and motivated by calculational convenience, we have re-
stricted ourselves to initial (or, using the language of the
renormalization group, bare) probability distributions of
the form

Py(x)=p8(x —1)+(1—p)8x +1)

i

with p =0.95 sufficiently large, for the dimensionalities of
interest, to guarantee that the {—1) bonds do not per-
colate across the lattice, while simulatneously maximiz-
ing smooth, quick convergence of the successive A,.
iteration of the recursion relation leads to an ever-
growing coilection of #-function spikes whose coefficients
and center of mass are altered with each new generation.
The numerical aspects of this procedure are handled with
relative ease on a computer. In Fig. 8, we illustrate our
results for the particular case b =4, indicating the form
of the renormalized probability distribution for genera-
tions i +3,6,9,12,15. The most transparent features are
the decreasing height and increasing width of successive
iterates (the RG, of course, preserves normalization) as
the renormalized distribution runs off in the direction of
~ . The accompanying inserts document the absolute
width §;, in addition to the width renormalization factor
A;=8,/8;_;, as a function of the generation i. After a
dozen iterations, the RG procedure is well en route to
asymptopia (certainly for b this small) and we attain
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FIG. 8. Renormalized probability distributions P;(x} at gen-
erations §+3,6,9,12,15, using the Derrida-Griffiths RSRG
technique for directed polymers on a b ==4 disordered hierarchi-
cal lattice. The inset shows the absolute rms width §; of the
iterated distribution, as well as the width renormalization factor
A;=8,/8,_;, which asymptotically approaches the value
A= 1,152

A=limA;=~1.152, which implies an energy fluctuation ex-
ponent w(b =4)}=In,A=~0.204, there being an uncertain-
ty of -t2 in the last digit associated with our terminating
at the fifteenth iteration. In Fig. 9, we summarize our re-
sults concerning @ for b <12, using the Derrida-Griffiths
RSRG. With the standard, but approximate, correspon-
dence between b-branch hierarchical and d-dimensional
hypercubic lattices b =2¢~1 we can connect immediately
to the physically relevant cases, showing explicitly our es-
timates for the directed-polymer wandering exponent
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FIG. 9. Energy fluctuation exponent w=In,A for general b,
as obtained by real-space methods. Using the standard, but ap-
proximate, correspondence between b-branch hierarchical and
d-dimensional hypercubic lattices, =277}, we can translate
these resulis to the cases of greatest physical relevance. Indicat-
ed explicitly are our estimates for the many-dimensional direct-
ed polymer wandering exponent {={1+w)/2, ford =n +1.

TIMOTHY HALPIN-HEALY 42

t=(w+1)/2. The general trend concerning the dimen-
sionality dependence of the critical indices is clear. For
d =1, the exact value @=1 is retrieved, followed by a
steady decline toward zero as d is increased, lending
much doubt to the previously advanced notion of sto-
chastic su 3gemwlvemality. As pointed out by Derrida and
Griffiths,” the result for d =32 is a bit below the known
wandering exponent {==2_ The great interest, of cousse,
is for higher dlmensmnahtxes, which have thus far eluded
exact analysis; whereas the functional RG yields ;.= 4%,
the RSRG value mentioned above requires 0.602, which
is certainly consistent, though somewhat greater. We
might add that it is especially so were the RSRG result
yet another underestimate. Finally, the Derrida-Griffiths
RSRG gives §;,,=0.575, considerably larger than the
approximate functional RG value. Unfortunately, for
b > 12, precise determination of o is difficult, rendering
unlikely any measure of the UCD. Nevertheless, the de-
cline of the exponents does appear to be asymptotic.
Indeed, if this is the case and the directed polymer, Eden
cluster and ballistic deposition (see next section) problems
do lack a finite UCD, a 1/d expansion for the critical ex-
ponents may bring some light to these issues. Oddly
enough, however, preliminary investigations®>* in this
direction suggest that the scaling may remain trivial
within a neighborhood of infinite dimensionality.

IV, EDEN CLUSTERS AND BALLISTIC DEPOSITION

Thanks to the work of Kardar, Parisi, and Zhang
(KPZ),” it is much appreciated these days that the ap-
parently intractable directed polymer problem is rather
closely related to a set of stochastic growth models, in-
cluding ballistic deposition and Eden clusters,* ~*' which
are correctly described by the nonlinear Burgers equation

3.k =V2h+LVR P +qix,t)

supplemented by random, uncorrelated space and time-
dependent noise n. Here, h is the local height of an Eden
cluster that grows upon a bed of seed particles forming
the {d —1)-dimensional substrate. Recall that for the
Eden model, the mechanism of stochastic growth is ran-
dom occupation, with equal probability, of any perimeter
site, whereas in ballistic deposition, particles are dropped
at random locations from above, follow a strictly vertical
descent and then stick to the deposit on contact. Either
way, iteration of the procedure leads to a compact, non-
fractal object with a propagating surface whose rough-
ness has interesting scaling properties. Indeed, the break-
ing of time-reversal invariance due to propagation in a
particular direction gives rise to the nonlinear term
above. This notion was suggested first by KPZ and then
observed explicitly by Plischke, Racz, and Liu® in a
simulation with simultaneous adsorption and emission.
Implementation of the Eden growth rule on 2 comput-
er using the so-called “strip geometry,” see Fig. 10,
where one considers a bin or container of transverse
linear dimension L, the following behavior is typically
noted for w, the rms surface roughness, At short times,
the width increases as a power law w ~t#, with a charac-
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FIG. 10. {a) Growth of a d-dimensional Eden cluster or.

ballistic deposit in the strip geometry, proceeding vertically,
shown at early (1,), intermediate (1,), and late {z,) times. The
bin has basal area L°7', while the propagating surface has
mean height h and rms roughness w. (b} Logarithmic plot of
surface width w vs time ¢ typically observed in computer simula-
tions. At short times, the roughness increases as a power law
with exponent B, whereas at large times it saturates at some
finite-size dependent value L%

teristic exponent B. There is a crossover phenomenon at
intermediate times. Finally, much later, when the height
greatly exceeds the base, the surface width saturates at
some L-dependent value w~L% A scaling ansatz con-
sistent with this behavior has the form w~L%{t/L%,
where for large argument the scaling function ¢ ap-
proaches a constant and for small argument it goes as a
power law with the necessary exponent B=a/z. Note
that the dynamic exponent z, a notation drawn from the
literature of critical phenomena, sets the time scale for
the inevitable finite-size induced crossover. Nevertheless,
it is known that this problem possesses only a solitary in-
dependent exponent, there being an index relation’®424

atz=2

revealing that the sum of the static and dynamic ex-
ponents is always the same, regardless of dimensionality.
Unfortunately, beyond this, the only existing exact results
are for Eden clusters and ballistic deposits in 4 =2,
where an analysis of Burgers’s equation has yielded
z=315% The strong-coupling exponents in higher di-
mensions have remained stubbornly elusive, however,
since for d 2 3, the problem has a nonperturbative nature
which renders the methods of KPZ essentially useless.
Yet, there has been no shortage of computer simulations
attempting to ascertain the growth exponents. The best
of the previous generation were due to Wolf and Kertész
on Eden clusters,*” who found a{d =3)=0.33+0.01 and
ald =4)=0.24::0.02 for the long-time exponent which
. they could determine with the greatest precision. Since it
is known that a(d =2)=1, their results led them to con-
jecture that a=1/d. More recently, Kim and Koster-
litz® simulated a solid-on-solid (SOS) model of ballistic
deposition, arriving at a competing conjecture
B=1/(d +1), having discovered with great care that

Bld =2)=0.33230.005, B(d=3)=0.250+0.005, and
Bld =4)=0.20+0.01. Of course, both of these conjec-
tures, aided means of the scaling relation, reproduce ex-
act results for d =2, Most importantly, though, the two
also suggest implicitly that the Eden clusters and ballistic
deposition problems lack a finite upper critical dimen-

“sion. In addition, it might be pointed out that the KX

conjecture yields the correct answer for the trivial case
d =1 as well, although we may not be justified in attri-
buting failure to WK in this very special dimension. Fi-
nally, Forrest and Tang® have just reported extraordi-
narily precise estimates of the short-time exponent in
higher  dimensions  B{d =3)==0.24040.001 and
Bld =4)=0.180=+0.005, which they manage via a map-
ping between SOS and Potts models on impressively large
lattices. Their values are close, but distinctly lower than
those of KK.

The relationship between the directed polymer and sto-
chastic growth problems is made explicit via the non-
linear Burgers equation and the simple substitution
hix,t)=InZ(x,t), which gives an imaginary-time
Schrédinger equation

3, Z=(V+mZ

for a particle subject to a dynamically random pinning
potential—such is the new role played by the uncorrelat-
ed stochastic noise . Some thought reveals that the
above non-Markovian diffusion equation is simply the
differential formulation of the Feynman path integral {or
partition function Z£) introduced in Sec. III for the
directed polymer in random media. Moreover, since we
have identified the height s of the Eden cluster and ballis-
tic deposit with the free energy InZ of the directed poly-
mer, it is clear that the fluctuations of these quantities
about their respective means should have the same tem-
poral scaling properties; that is,

BEden =dpp -

Similar reasoning necessitates the identification of 1/z
and £, although this falls out rather naturally from the
scaling law.

The important point, of course, is that there really is
only a single exponent in ail this. Hence, the dynamic in-
dex z =4 of Eden clusters and ballistic deposits in d =2,
is just the wandering exponent {=2 for the (1+1)-
dimensional directed polymer. Ignorance of the many-
dimensional directed polymer index translates into lack
of knowledge regarding Eden clusters and ballistic depos-
its in higher dimensions. Nevertheless, we can compare
our functional and real-space RG estimates, obtained
within the context of directed polymers, with the conjec-
tures advanced in the realm of stochastic growth models.
In d #3, we have '

Berg=% Brsrg=0.204 ,

the first in explicit agreement with the WK value, the
second an apparent confirmation, though noticeably
greater. All, however, are clearly less than the KX pre-
diction of I, well outside KK’s quoted uncertainties. In
the opinion of the author, this dimensionality, which
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after all is the most physically relevant, will be the prov-
ing ground upen which these and future conjectures may
fall. For d=4, Bpg=+%, Bwx=% Brsrc=0.15,
Ber=0.18, Bxx=+. If, as we suspect, the RSRG sys-
tematically underestimates the eritical exponents, some
-doubt is cast upon the WK and functional RG conjec-
tures. However, were the latter to hold true, a most in-
teresting ramification would be the existence for the Eden
cluster and ballistic deposition problems of a finite UCD

d, =3, beyond which the surface scaling properties are-

elementary. Needless to say, though provocative, this no-
tion*® is very much at odds with the prevailing wisdom as
embodied in the ideas of WK and KK.

V. COLLECTIVE FLUX CREEP
IN CERAMIC SUPERCONDUCTORS

Recently, investigators®~%® of high-T. superconduc-

tivity have concerned themselves with the physical prop-
" erties of the Abrikosov flux line lattice (FLL}) exhibited by
these materials in an external magnetic field. In particu-
lar, there appears to be an unfortunate tendency towards
giant thermal flux creep,’’ as well as the possibility of
some interesting phases,*® including an entangled vortex
glass state and a melted FLL. Nelson,* initially respon-
sible for proposing these peculiar phases, considered only
the effects of thermal fluctuations, ignoring the potential-
ly crucial role of disorder; that is, the randomly distribut-
ed defects (perhaps oxygen vacancies in the 1:2:3 com-
pounds) responsible for pinning and roughening the vor-
tex lines. This admittedly difficult issue was addressed in
the context of Nelson’s work by Nattermann and Lipow-
sky,”® who provided a quantitative measure of the
disorder-induced wandering of an isolated flux line, as-
suming the then best value of §;.;. They, furthermore,
suggested that Nelson’s novel phases would persist. Of
course, for most regimes of experimental interest the vor-
tices do not exist by their lonesome, but rather are un-
deniably part of an elastic, though highly anisotropic
FLL. To address properly the phenomena of giant flux
creep in ceramic superconductors, one must understand
the collective effects of disorder upon the vortex lattice.
In the long-wavelength Jimit, the most natural descrip-
tion relies upon continuum elasticity theory with a 2D
disortion field u{r) describing the local displacement of
the FLL in 3D space, a collection of elastic moduli, and a
random pinning potential ¥ (#) meant to mimic the
FLL interaction with defects, A moment’s reflection re-
veals that, for quenched uncorrelated disorder, we have
yet another specific application (n =2, d'=3) of the gen-
eral ideas proposed herein. '
FeigePman, Geshkenbein, Larkin, and Vinokar,*
motivated by the controversial experiments indicating gi-
ant flux creep in the high-T, materials, have further
developed the Anderson concept of the flux bundle using
as an essential ingredient in their analysis the notion of
impurity-induced manifold roughening.’® Operating un-
" der the assumption of Bean’s critical-state scenario, they
find several different regimes of collective flux creep in
which the bundle activation barrier U depends on the
current j via a power law
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Ui~je,

where the exponent ¢ is determined uniquely by the
roughening exponent §3,. In particular, for the cir-
cumstance special to these ceramic materials in which
vortex creep is observed at currents very small compared
to the critical current (f <<j,), they predict

a=(1+26)/(2—¢) .

Other characteristic properties of the bundle diverge
similarly as j —0, including the average bundle size

r(j),._,j—i/(Z—-gJ ,

as well as the amplitude of the hopping distance

Uy )= T27H)
Recalling our central result for diverse manifolds in ran-
dom media,

gd’.ﬂ :2(4’"’d')/(8+n)

(see Sec. IIT}, the functional renormalization group pro-
vides us with an estimate for the relevant exponent
£32=+sothata=1.

As pointed out by Feigel'man and coworkers,® the
power-law decay of the barrier height has rather startling
consequences. Namely, when the superconductor is ex-
posed to a magnetic field giving rise to an Abrikosov
FLL, the Bean's critical state is formed on a short time
scale 7. At some much later time ¢, Hux creep has been
responsible for the decay of the persistent current down
to the value j(1), determined implicitly by

UGj(e)y=Thn(t/7),

where T is the temperature and, with typical laboratory
observation time scales, the logarithm is usually of the or-
der ~10-30. Because of the power law decay, U~j7¢,
it is evident that the current decreases rather rapidly with
temperatures and logarithmically in time. These findings
are not inconsistent with the results of magnetic measure-
ments of critical currents in which a fast drop of j{1,T)
with T increasing and large relaxation effects were noted.

Lastly, Feigel'man, Geshkenbein, Larkin, and Vinokur
have managed to construct an energy argument that per-
mits them to relate £, , with the same n, but different d'.
Supplementing their analysis with the known value
£y,1=2 they obtain an explicit prediction for the general
case. In fact, the roughening exponent they retrieve is
none other than our fundamental result, providing strong
independent support for the validity of the functional RG
estimate. As part of the package, they also find a su-
peruniversal B, =1,

Vi, SUMMARY

The general subject discussed in this paper has been
the scaling properties of diverse manifolds in quenched
correlated random media. A unified treatment, based on
the consideration of an n-dimensional distortion field z(x)
of d’-dimensional support, was proposed and an approxi-
mate functional renormalization group applied to esti-
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mate £y , =2(4-d’)/(8+n), the sole critical index of in-
terest. An impressive collection of physical problems
proved to be nothing but special cases. Starting with
domain-wall roughening due to pinning impurities, we
considered next the wandering of directed polymers in a
disordered environment. The latter, an optimization
problem exhibiting an ultrametric free energy landscape,
may be relevant in explaining the structures of river basin
deltas, capillary networks and neuronal arrays and is of
great theoretical interest because it can potentially eluci-
date many difficult points of spin-glass phenomena.
Moreover, because of a transformation via the stochastic
Burgers equation, the directed polymer problem is for-
mally identical to the dynamic scaling properties of the
surfaces of Eden clusters and ballistic deposits. Using the
Derrida-Griffiths real-space renormalization group, we
managed, at least for the case of directed polymers, a

check on the functicnal RG estimates. Finally, we con-
sidered the effects of weak disorder upon Abrikosov flux
lattices in the new ceramic superconductors. A recently
proposed theory of collective flux creep, due to
Feigel’'man et al., have further explored these ideas and
managed to retrieve the functional RG value via indepen-
dent means.
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Comment on “Growth ina thncted Sohd-on-Sohd
Model”

Reccntly. Kim and Kosterhtz‘ (XK) reported rathcr' |

interesting results concerning their simulation of ballistic
deposition upon a (d — 1)-dimensional substrate. More
specifically, their data led them to conjecture that at
short times, the interfacial width, 2 measure of the sur-
face roughness, grows as t* with the critical exponent
B=1/ (d-l-l) As ballistic deposition and Eden cluster
growth? appear te be in the same universality class and a
" mapping via the stochastic Burgers equation ties them
rather intimately to the physics of directed polymers in
random media,” the KK conjecture clearly has very
strong implications for an impressive variety of prob-
lems. Prior to KK, the most precise investigation was
that of Wolf and Kertész> (WK) on Eden .clusters,
which yielded their own conjecture a=28/(8+1)=1/d,
for the saturation exponent. . Analytic work by Halpin-
- Healy* (and Nattermann), using a functional renorm-
alization-group (RG) treatment of diverse manifolds
subject to quenched disorder, retrieved all known exact
results, including cases of correlated randomness, for
directed polymers in two dimensions and, furthermore,
gave {p41=3/5 for the wandering exponent in d=3,
- lending some support to the WK value there.
In this Comment, we present further evidence of a de-
creasing many-dimensional directed polymer roughening
exponent {. Using real-space RG (RSRG) methods in-

troduced by Derrida and Griffiths,” we calculate the en- .

ergy fluctuation index o *2{—1 for directed polymers,
which the Burgers equation permits us to identify as the
short-time exponent § of ballistic deposition and Eden
growth, As a practical matter, the RSRG procedure in
the present context amounts to renormalizing, iterative-
ly, a probability distribution for the random bond ener-

gies and following the evolution of its width, After many -

RG transformations, the width renormalization factor
approaches an asymptotic value, A=2%, that depends
~ solely on the spatial rescaling factor b of a given
hierarchical lattice. For these lattices, the RSRG
method is exact, though here numerically implemented,
and we plot our results in Fig. 1. Using the standard,
but approximate, correspondence between b-branch
hierarchical and d-dimensional hypercubic lattices,
b=29"1, we connect to the physically interesting cases.
_ Regardmg the dimensionality dependence of the critical
indices, the general trend is clear. For d =1, the exact
value @™ % is recaptured,® followed by a steady de-

cline toward zero as d is increased, raising further doubts -

concerning the concept of stochastic superuniversality.
As shown previously by Derrida and Griffiths, the result
for d=2 is a bit below the known exponent +. The
great interest, of course,.is for higher dimensionalities.
There we find that the RSRG yields o{d =~3)=0.204, a
value that is consistent with, though slightly greater
than, the functional RG calculation (and WX predic-

tion) of ¥, but certainly less than the KK conjecture §.
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FIG. 1. Results (@) following from a RSRG analysis of the
directed polymer problem on generalized hicrarchical lattices,
extending the method of Derrida and Griffiths, Plotted is the
width renormalization factor A for b-branch hierarchical lat- .
tices. The energy fluctuation index for directed polymers is
given by @=InA/ln2, which in turn is equivalent to the short-
time exponedt § characterizing roughness of a growing Eden
surface. The relation b =29"" permits explicit, albeit approxi-
mate, translation of these results to the more familiar d-
dimensional hypercubic lattices. Hence, we obtain new esti- -
mates for the wandering exponent {, whose numerical values
are indicated. For companson. we include the functional RG
work (x) of Ref. 4, as well as'the con;ectum; of KK (@) and
WK (a),

Naturally, were the RSRG result yet another underesti-
mate, more credence is lent to the ideas of KK. Subject -
to the same caveat, we find similar, though still some-
what poorer, agreement with the WK value
w(d=4)= 3. Finally, we emphasize that an e=d~1

- expansion of RSRG, 3 while potentially cxact, apparently

disagrees with all conjectures to date.
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