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Comment on “Depinning Due to Quenched
Randomness”

The statistical mechanics of interfaces in random
media, as illustrated, for example, by disorder-induced
critical wetting and roughening phenomena, has been a
subject of great interest since the seminal work of Huse
and Henley [1], Kardar and Nelson [2,3], and Lipowsky
and Fisher [4]. The purpose of this Comment is to bring
to resolution an outstanding issue that has remained at
the heart of this matter for several years now. It con-
cerns the liberation exponent y for interfacial depinning
due to quenched randomness. One considers a 2D Ising
model on a semi-infinite square lattice in which there is a
energetically favorable row of weak bonds along the edge.
The imposed boundary conditions are such that at low
temperatures and in the absence of strong disorder there
is a 1D elastic interface running through these weak
bonds, localized by the contact pinning potential along
the edge of the sample. As the quenched randomness in
the bulk is augmented, however, the interface wanders in-
creasingly further from the edge, searching for minimal
energy configurations. Eventually it undergoes a depin-
ning transition. Kardar [2], in his original work on the
subject, used Bethe-ansatz techniques within a replica
formalism to determine that the mean position of the 1D
interface diverged quadratically as the disorder strength
in the bulk was raised to its critical value. That y=2 for
critical wetting in 2D random-bond Ising models can also
be established via bead and necklace model ideas of
Lipowsky and Fisher [4], who found that w=¢/(1—¢),
where ¢gg= 7 is the interfacial wandering exponent. At-
tempting to verify this novel surface critical phenomena,
Kardar [2] performed a series of numerical simulations
for disorder-induced depinning both from a wall and in
the bulk. Somewhat paradoxically, though, his numerical
efforts in this regard revealed only an approximately
linear divergence, which he attributed to an inability to
reach asymptotic scaling behavior. Examining this depin-
ning transition using more advantageous scaling variables
and with the benefit of somewhat greater computational
power, we have managed to access the true critical re-
gime, thereby observing the elusive quadratic divergence.

In Fig. 1, we show the results of our simulation, based
on Kardar’s solid-on-solid model in the presence of ran-
dom bonds. In this formulation, the interface runs paral-
lel to the x axis on a square lattice with y =1, one end
being pinned to (0,1) and a particular configuration de-
scribed by the set of integer heights {y(x)}. Whenever
y(x+1)=p(x) £ 1, the interface jumps vertically, incur-
ring an elastic energy cost K, with associated Boltzmann
weight y =exp(—K). The horizontal segments along the
edge u(x,1)=yu, are weaker than those in the bulk,
which are assumed to be independent random variables
drawn uniformly from the interval [u,—s/2,u,+s/2].
The total Boltzmann weight of interfaces connecting
(0,1) to (x,y) is calculated recursively by transfer-matrix
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FIG. 1. Interfacial delocalization by quenched randomness
from an edge contact potential. The inverse localization length,
given by the reciprocal of the mean position of the interface,
vanishes quadratically as the variance of the bulk disorder
strength attains its critical value.

techniques [2]. We have used »=0.3 and u, — u, =0.34,
as in Kardar’s original paper, and typically performed the
disorder average over 500-1000 realizations of random-
ness. We estimate s.=1.54+0.01. However, path
lengths as large as 5.0 % 104, 7.5%10%, 10° were necessary
to achieve saturation for s =1.45, 1.47, 1.49, respectively.
The figure shows the inverse localization length versus s°2,
the latter being the most appropriate abscissa since the
replica theory predicts / ~'~(const—«)2, where x !
=48y/s% Note that although the quadratic behavior be-
comes apparent as s2— 52, it is inevitably so only with
the inclusion of the final three data points alluded to
above, indicating the extreme difficulty of the problem.
We find similar results for disorder-induced depinning in
the bulk, but with a slightly larger critical regime. All
this is in sharp contrast to the much less stubborn case of
complete wetting in random media, for which it is consid-
erably easier to elicit asymptotic scaling [5].
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